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ABSTRACT
Groundwater exploration is crucial for ensuring sustainable water supply, particularly in regions with increasing
population and surface water scarcity. This study focuses on the application and correlation of Multi-Criteria Decision
Analysis (MCDA) techniques in the evaluation of groundwater potentiality in the study area (Ilere) of Ondo state,
Nigeria. The integration of geophysical, geological and remote sensing data was carried out using the Preference
Ranking Organization METHod for Enrichment Evaluations (PROMETHEE-II) and the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) models. The CRITIC and Entropy methods were employed for objective weight
determination of seven key groundwater conditioning factors: Lithology, hydraulic conductivity, lineament density,
transverse resistance, drainage density, elevation and transmissivity. The study utilized Python for data processing
and modelling and thematic maps were generated within a GIS environment. The validation of the groundwater
potential models was conducted using correlation analysis, Area Under The Curve (AUC) and p-values, achieving a
“very good” performance rating with an AUC of 0.89 and a statistically significant p-value of 3.96e-7, indicating a
strong relationship between the models. The study’s findings provide a robust framework for groundwater resource
management in crystalline basement complex terrains, offering valuable insights for sustainable water development
in similar regions.
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INTRODUCTION
In crystalline basement environments, groundwater serves as a critical and often the “most important” in
human life that it is considered a fundamental necessity for sustainability in both human and ecological
systems1. It is invaluable, but yet a “finite” natural resource which is indispensable for domestic,
agricultural, industrial and environmental use2. Groundwater is essential to the extent that environmental
sustainability would be nearly impossible without it. It is also defined as an irreplaceable natural resource
essential for sustaining life. It is obtained as a result of atmospheric inputs in the form of rainfall, fluvial
systems including surface water channels and streamflow system and subterranean aquifers storing
groundwater. As population growth intensifies, this vital resource is becoming increasingly scarce. To
address the challenges posed by expanding populations and surface water shortages, groundwater
exploration plays a crucial role in uncovering hidden water reserves beneath the Earth’s surface, ensuring
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a sustainable water supply and mitigating environmental challenges. In complex basement terrains,
groundwater availability is largely influenced by geological structures such as fracture zones and joints,
or by the presence of significant thicknesses of saturated materials overlying the basement, collectively
referred  to  as  aquifers3.  An  aquifer  typically  exhibits  a  vertical  stratification  that  can  be 
categorized  into  four  hydrogeological  units: The  topsoil  horizon,  the  weathered  overburden  (often
referred to as the regolith), the weathered and fractured crystalline layer known as saprolite and the
underlying unweathered crystalline basement, which generally acts as an aquitard due to its low
permeability4. Despite  their  inherently  low  primary  porosity  and  limited  groundwater  storage 
capacity,  basement aquifers can serve as viable water sources when characterized by significant
overburden thickness and the presence of structural discontinuities such as fractures and joints that
enhance secondary permeability. This potential  is  particularly notable in regions where these features
are  laterally  continuous5.  In  Southwestern  Nigeria,  crystalline  basement  aquifers  are  irreplaceable 
criteria in groundwater supply4.  Specific  basement  lithologies,  including  foliated  metamorphic  units 
 such  as   schist,   weathered  meta-sediment and  migmatite  gneiss,  possess  significant  groundwater
potential5-7. These  lithologic  units  often  develop  secondary  porosity  through  weathering  and 
fracturing processes, enabling them to function as efficient zones for groundwater storage and
transmission. Owing to the predominantly subsurface occurrence and minimal surface indicators of
aquifer-bearing structures, geophysical methodologies, particularly electrical resistivity and
electromagnetic profiling, have become crucial methods for delineating groundwater potential zones
accurately with high spatial and structural resolution8. As a result, several researchers, including3,9,10 have
conducted  extensive  hydrogeophysical  investigations,  particularly  in  crystalline  basement  complex
terrains, to better understand and optimize groundwater resource exploration.

The  integration of geological mapping, remote sensing imagery, Geographic Information System (GIS)
and geophysical investigations significantly enhances the precision of groundwater exploration by
delineating aquifer potential  zones.  Multi-Criteria  Decision  Analysis  (MCDA);  particularly  techniques 
like the Analytical Hierarchy Process (AHP) and Criteria Significance Index (CSI) are essential for
aggregating heterogeneous datasets and guiding site ranking decisions. Recent applications of MCDA
have demonstrated robust groundwater potential zonation and optimization of target areas, contingent
on the selection of appropriate decision-making frameworks11,12. To achieve a robust, full of alternatives,
this study utilizes the PROMETHEE II (Preference Ranking Organization Method for Enrichment
Evaluations) and the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) approach.
Both well established in multi-criteria decision analysis. PROMETHEE II offers complete preference ordering
through net flow scoring, while TOPSIS ranks alternatives based on relative proximity to an ideal solution.
These methods have demonstrated efficacy in groundwater resource modeling when integrated with GIS
and MCDA techniques13-16. Despite the effectiveness of MCDA models, validating their accuracy and
reliability is crucial to ensure their practical applicability in groundwater exploration and management.
Groundwater potential assessment typically relies on validation techniques to ensure the reliability and
accuracy of predictive models. Traditionally, well data validation, which involves comparing model results
with actual borehole or well yield data, has been widely used. However, while this method provides direct
empirical verification, it presents several limitations like; limited special coverage, seasonal or long-term
fluctuation in groundwater levels, measurement error and logistics problems. One of the key approaches
to validation is inter-model correlation analysis, which compares the results of multiple models in
determining the level of agreement and reliability17. Inter-model correlation helps to identify discrepancies
between models, highlight areas of uncertainty and provide a measure of confidence in the generated
results. Furthermore, model validation through statistical indicators such as the correlation coefficient,
Area Under the Receiver Operating Characteristic Curve (AUC) and p-value provides a quantitative basis
for evaluating predictive performance. These metrics offer insights into the strength of association,
classification accuracy and statistical reliability of the models under investigation10,14,18 .
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The  adoption  of  inter-model  correlation  is  particularly  beneficial  in  groundwater studies, where
uncertainty in subsurface conditions and data limitations can introduce potential biases in model outputs.
By comparing the results of PROMETHEE-II- CRITIC and TOPSIS-Entropy models, this study focused on
enhancing the reliability of the PROMETHEE II technique in conjunction with CRITIC Objective weightage
and TOPSIS-Entropy for groundwater potentiality index and rating of the study area, which will serve as
a decision-support framework to stakeholders. The AUC metric, which measures the model’s ability to
distinguish  between  high  and  low  groundwater  potential  zones,  and  the  p-value, which indicates
statistical significance, are employed to validate the consistency of the models. Recent advancements in
multi-criteria decision-making frameworks have extended classical PROMETHEE and ELECTRE models
through the integration of advanced analytical tools. Arcidiacono et al.19 introduced a robust extension
of PROMETHEE by incorporating methods such as Robust Ordinal Regression, Stochastic Multicriteria
Acceptability Analysis (SMAA), the bipolar Choquet integral and the Multiple Criteria Hierarchy Process.
Similarly, enhanced PROMETHEE and ELECTRE methodologies to accommodate hierarchical criteria
structures, thereby  improving their applicability to complex decision environments. The CRITIC (Criteria
Importance Through Intercriteria Correlation) Methodology offers a data-driven framework for objectively
determining criterion  weights through intra-criteria variability and pairwise correlation analysis. This
algorithm ensures that prioritization is driven by the relative performance of the best and worst criteria,
ultimately generating a robust composite index. Python, with its high-performance library and
computational efficiency, was employed to implement the CRITIC algorithm and process the model
calculations. Groundwater potential assessment in this study area integrated multiple geospatial and
hydrogeological factors, including transmissivity (T), hydraulic conductivity (K), transverse resistance (TR),
lineament density (Ld), drainage density (dd), elevation and lithology class (L) derived from geoelectrical,
geological and remote sensing datasets. Complementary recent applications in similar hard rock settings
further validate the utility of Python-based CRITIC and Entropy weighting in MCDA frameworks10,20. This
study aims to validate groundwater potential models using statistical techniques and insights derived from
the electrical resistivity method.

METHODOLOGY
The study was conducted in several stages by integrating geology, geophysical data and remote sensing
datasets. The first stage involves the collection of geophysical data using the electrical resistivity method
(Vertical Electrical Sounding technique) and geological mapping for classifying the area to create a
simplified geological map. A remote sensing dataset, including a Digital Elevation Model (DEM), was
preprocessed to generate lineament density and drainage density maps, while elevation data was acquired
via GPS. The acquired datasets were systematically processed and analyzed to delineate the groundwater
potential across the study area. Spatial layers representing key controlling factors were generated and
georeferenced within the ArcGIS environment to produce thematic maps essential for spatial modeling
and multi-criteria evaluation. The thematic maps for these variables were generated in ArcGIS 10.8 utilizing
the Inverse Distance Weighting (IDW) interpolation method. Subsequently, the CRITIC and Entropy
weighting scheme, implemented in a Python environment, was employed to objectively quantify the
relative  importance  of  the  selected  criteria.  The  weighted  parameters  were  then integrated using
the  PROMETHEE-II  and  TOPSIS  ranking  algorithm  to  compute  a  composite  Groundwater  Potential
Index (GPI), facilitating a robust special prioritization of groundwater potential zones. This process
culminated in the creation of a groundwater model map within a GIS environment for the study area.
Figure 1, Flowchart of the methodology, illustrates the sequential steps of the study from data collection
to analysis.

Location, site and accessibility: Ile  here  is  situated  in  Ifedore  local  government  area  of  Ondo 
State,  in  the Southwestern  basement  complex  of  Nigeria Fig. 2. The  study area “Ilere” is located along
Ijare road and data acquisition was between March and April, 2024. The geographic extent of the study
area is defined using Universal Traverse Mercator  (UTM) coordinates system, based on the Minna Datum
(Zone 31N). Spatial boundaries span from Easting 738567 mE and 739035 mE and Northing 806719 mN
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Fig. 1: Flowchart of  methodology

Fig. 2: Location map of the study area within Ondo State, Nigeria
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Fig. 3: Elevation map of the study area

Fig. 4: Simplified geology map of Ilere
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and 812694 mN and Longitude 5E10’30’’E and 5E09’30’’E and Latitudes 7E19’30’’N and 7E18’30’’N. It is
a well-built-up area and is accessible through major tarred roads, various untarred roads and footpaths.
The study area comprises a partially built-up environment accessible via a network of major paved roads,
secondary unpaved routes and pedestrian footpaths. Topographically, the terrain exhibits moderate to
high undulations, with surface elevations ranging from approximately 354 m to 398 m above mean sea
level (Fig. 3). The regional climate conforms to the typical Southwestern Nigerian pattern, characterized
by the moisture-laden southwesterly monsoon and the arid northeasterly trade wind originating from the
Sahara Desert. The rainy season extends from April to October, with peak precipitation typically occurring
between August and October. Meteorological records indicate an average annual rainfall of 1546 mm, a
mean annual temperature of 25.9EC and a relative humidity averaging 77%21.

Geologically, the area lies within the Precambrian Basement Complex of Southwestern Nigeria14. The
mapped lithological units predominantly comprise porphyritic granite and migmatite gneiss, with the
latter occupying over 80% of the subsurface, thereby constituting the dominant rock formation across the
study region Fig. 4.

Lithology: The lithologic framework of the study area was extracted from the simplified geology map of
the study area. The area was mapped geologically, taking note of all the outcrops seen in the environment
as well as their coordinates. The coordinated and rock types were saved into an Excel file, which was
georeferenced using the ArcGIS environment. A shapefile delineating the study area was developed and
utilized to generate the lithological map presented in Fig. 4.

Remote sensing and spatial analysis: Remote sensing techniques were employed to derive key
morphometric parameters, specifically lineament and drainage density, crucial for groundwater potential
assessment. Lineament features were extracted from Landsat 8 Operational Land Imager (OLI) imagery
of the study area. In addition, a Digital Elevation Model (DEM) was acquired from the Shuttle Radar
Topography Mission (SRTM) dataset via the United States Geological Survey (USGS) Earth Explorer portal.
The DEM was reprojected to the Universal Transverse Mercator (UTM) coordinate system (Zone 31N,
Minna Datum) to ensure spatial consistency during analysis.

Lineament detection was conducted using the PCI Geomatica 2012 software, applying edge enhancement
and directional filtering techniques to improve feature delineation. The resulting linear features were
processed using kernel Density Estimation (KDE) to generate a continuous surface representing lineament
density, as illustrated in Fig. 5. For drainage density analysis, the hydrological workflow was implemented
in ArcGIS, including the generation of flow direction and flow accumulation layers. The extracted drainage
network was analyzed using the Line Density tool, producing the drainage density map.

Elevation: The Global Positioning System (GPS) was used for the collection of elevation data. The GPS was
tuned to WGS 1984, Minna, Nigeria, 31N datum. The data was saved and georeferenced in a GIS
environment, creating the elevation map Fig. 3, which shows the steepness of the area, which serves as
a pointer to the degree of runoff and infiltration.

GEOPHYSICAL  METHOD
Geophysics data acquisition in the study area was conducted using the Vertical Electrical Sounding (VES)
method, specifically adopting the Schlumberger array electrode configuration. Electrode spacing (AB/2)
was progressively increased from 1 m to a minimum of 300 m about  a  fixed  central  point  to  capture 
the  vertical  distribution  of  apparent  resistivity  in the subsurface. This array configuration enables
improved resolution of deeper lithological units with increased electrode separation.
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Fig. 5: Study area map showing the data acquisition points

Fig. 6(a-c): Typical ves curve types obtained in the study area
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A total of fifty-nine VES stations were established across the study area to ensure adequate spatial
coverage. Measurements of subsurface resistivity were obtained using the OHMEGA resistivity meter.
Global Positioning System (GPS) receivers were used to georeferenced each VES location for subsequent
spatial modeling and integration within a GIS environment. The layout of the VES stations is illustrated in
Fig. 5.

Field data were initially plotted as apparent resistivity versus half-current electrode separation (AB/2) on
bi-logarithmic graph paper. Preliminary interpretations were performed through manual partial curve
matching with standard master curves to generate smooth theoretical responses. Further refinement of
the resistivity sounding curves was achieved using the 1D computer-based iterative inversion software.
This enabled the derivation of geoelectrical parameters, including layer resistivity and thickness, which are
essential for characterizing aquifer systems and delineating subsurface lithologic units. Representative VES
curves from the study area are presented in Fig. 6(a-c), while a summary of the interpreted geoelectrical
parameters is provided in Table 1.

Derived second order geoelectric parameters: Second-order geoelectric parameters, which is critical
for evaluating aquifer hydraulic performance, were computed from the primary geoelectrical
characteristics, namely layer resistivity and thickness, as obtained from the VES interpretation Table 1.
These derived parameters include hydraulic conductivity (K), transverse resistivity (TR) and transmissivity
(T), which serve as essential indicators in the delineation of groundwater potential zones.

The hydraulic conductivity (K), expressed in meters per day (m/day), was estimated using an empirical
relationship that correlates aquifer resistivity (ρ) to hydraulic conductivity. The adopted equation is as
follows:

(1)0.0072K 0.0538e 

where, is aquifer resistivity:

(2) 
2mTransmissivity Khday

where, K is hydraulic conductivity and h is aquifer thickness:

TR (ΩM) = hn *ρn = h1 * h2+h2 *ρ2+... ... ..+hn+ρn

Groundwater potential conditioning factors and gis modeling: The spatial groundwater potential of
the study area was analyzed using seven conditioning parameters: Lithology, hydraulic conductivity (K),
lineament density (Ld), transmissivity (T), transverse resistivity (TR), elevation  and  drainage  density  (dd). 
Thematic  maps  for  these  variables  were  generated  in ArcGIS 10.8 utilizing the  Inverse  Distance 
Weighting  (IDW)  interpolation  method.  Primary  geoelectrical  data  from Table 1 were used to compute
hydraulic parameters, which subsequently formed the basis for geoelectric thematic layers, Fig. 7, 8. These
GPCF thematic maps, Fig. 3, 4, 6-8 serves as input layers for the development of python-implemented
PROMETHEE-CRITIC and TOPSIS-Entropy multi-criteria decision models. The hydrological importance of
these conditioning factors for modeling groundwater potential in crystalline basement settings has been
supported by recent studies in Nigeria22,23. 

MODEL REVIEW
CRITIC weighting techniques: The Criteria Importance Through Intercriteria correlation (CRITIC) method
is  widely  used  objective  weighting  approach  that assigns criterion weight based on both the variability
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Fig. 7: Lineament density map of the study area

Fig. 8: Drainage density map of the study area

and inter-criterion conflict, eliminating subjectivity from the weighting process. This data-driven method
evaluates each criterion’s standard deviation and correlation with other criteria to derive a weight that
reflects its discriminatory power24,25.
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Initially, the decision matrix is normalized, typically using z-score standardization to ensure comparability
across criteria. Subsequently, the standard deviation of each criterion vector is calculated to quantify its
contrast intensity. Inter-criterion correlation coefficients are computed to assess the potential redundancy
or conflict between criteria. CRITIC combines these two measures to calculate the information content for
each criterion.

(3)
min

ij i
ij max min

j j

Y - yρ = i =1,..., m; j =1,...,nY - Y

For benefit criteria:

(4)
max
j ij

ij max min
j j

Y - Yρ = i =1,..., m; j =1,...,nY - Y

ρij = Standardized value of criterion j for alternative i
yij = Original value of criterion j for alternative i
yj

max and yj
min = Maximum and minimum observed values of criterion j, respectively

m = Number of alternatives
n = Number of criteria

For cost criteria:

(5)
   

   
jk

m
ij j ik ki =

2 2m m
ij j ik ki = 1 i = 1

ρ -ρ ρ -ρ
V =

ρ -ρ ρ -ρ


 

J, k =  1,…..,n
Vjk = Pearson correlation coefficient between criteria j and k

and = Mean standardized values of criteria j and k, respectivelyJρ kρ

(6)j
j n

kk = 1

βW =
β

Wj = Normalized objective weight of criterion j
= Total information content across all criterian

kk =1β

Where:

(7) n
j j jkk =1β = σ 1- V ; j =1,...,n

βj = Amount of information contributed by criterion j
σj = Standard deviation of criterion j, representing its contrasting intensity
(1-vik) = Degree of conflict (independence) between criteria j and k

This process prioritizes criteria that are both highly variant and relatively independent, thus increasing
decision-making robustness24. The CRITIC has been successfully deployed in environmental and water
resource studies.
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Table 1: Summary of the VES results obtained in the study area
Resistivity (Ωm) ρ1,ρ2......ρn Thickness h1, h2…...hn (m) Curve type
40/1083/108/4023 1/1.5/7.8 KH
31/402/4234 3.9/4 A
59/101/2070 0.9/8 A
201/396/111/4634 2/0.4/3.6 KH
69/179/822/7325 4/1/0.6 AA
64/101/41/1666 3.7/1/26 KH
53/522/22/7407 0.4/0.8/3.7 KH
205/72/385 2/5.9 H
101/270/799/156 1.2/12.1/6.5 AK
380/117/567/213 0.6/0.9/6.8 HK
201/357/243 0.5/14.4 K
86/904/265 2.2/6.9 K
281/101/557/199 0.7/0.3/15.2 HK
533/324/639/180 0.6/1/9.7 HK
188/429/337/169 0.8/0.5/22.7 KQ
69/273/43/806 0.3/8.5/0.5 KH
48/387/528 0.2/0.7 A
244/462/254/440 0.6/1.3/8 KH
126/356/146 1.2/44 K
78/124/362 2.8/0.3 A
75/160/62/1422 0.7/2.2/4 KH
114/96/108/915 1.3/0.1/14.2 HA
144/944/109/955 0.3/1.5/7.5 KH
38/64/1656 0.4/3.9 Q
132/603/94/1088 0.2/1.8/7.4 KH
56/597/229/925 0.5/0.7/6 KH
111/273/5597 2.6/0.6 Q
148/1167/965 0.8/5.2 K
61/254/16/306 0.4/3.5/1.4 KH
153/31/220/1488 1/1.2/1.4 HA
420/46/1649 0.7/5.6 H
113/64/886 0.9/4 H
408/88/2747 0.2/6.9 H
91/24/639/4603 0.7/2.8/2.8 HA
234/29/1763 0.9/7.4 H
146/35/623 0.3/4.6 H
98/72/18/1500 2.2/0.2/1.4 QH
128/2478/477/648 1.5/0.1/4.2 KH
86/449/155/876 0.6/0.7/11 KH
298/163/755 1/9.9 Q
205/96/1274 0.5/6 H
121/130/2617 1.7/7.3 A
160/252/1917 5.2/0.2 A
50/125/2064 0.3/19.1 A
61/155/1615 0.8/11 A
218/169/1178 0.6/8.4 H
559/178/1040 0.4/15.9 H
258/116/597 0.3/5.9 H
239/61/151/794 0.7/0.8/10.9 HK
1226/228/863 0.5/17.2 H
126/33/138/327 2/0.6/0.4 HK
135/415/24/1506 0.7/2.3/5.1 HK
277/113/745 0.8/2.9 H
218/300/1617 9/10.2 Q
26/592/230/1224 0.3/0.8/12.1 KH
628/31/1599 2.1/2.6 H
249/143/906 3.6/15.4 H
140/209/1170 1.5/18.8 A
140/135/550 1.5/9 H
A:  ρ1<ρ2<ρ3,  AA:  ρ1<ρ2<ρ3<ρ4,  AK:  ρ1<ρ2<ρ3>ρ4,  H:  ρ1>ρ2<ρ3,  H A:  ρ1>ρ2<ρ3<ρ4,   HK:  ρ1>ρ2<ρ3>ρ4,  K:  ρ1<ρ2>ρ3,
KH: ρ1<ρ2>ρ3<ρ4, Q: ρ1>ρ2>ρ3 and QH: ρ1>ρ2>ρ3<ρ4
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ENTROPY METHOD
The entropy weighting technique is a non-expert, data-driven framework that objectively derives criterion
weights by quantifying the degree of information dispersion within each indicator. This method utilizes
probability distributions to evaluator. This method utilizes probability distributions to evaluate uncertainty:
criteria with greater variability across alternatives contribute more informational value, resulting in higher
entropy weights. In multicriteria groundwater modeling applications, weight computation follows a
sequence of constructing a decision matrix, normalizing data, calculating entropy values and deriving
criterion weights accordingly. Entropy-based weighting has proven effective in groundwater studies across
basement complex terrains where expert bias must be minimized10,25-29. Equation 8 helps construct choice
matrix by comparison of performance of each alternative.

(8)  11 12 n
ij 2n 2n 2n

m1 m2 mn

X X X
X = X mxn= X X X

X X X
 
 
  

Let, Xij represent the performance value of the ith alternative (i = 1, 2,…, m) with respect to the jth evaluation
criterion (j = 1, 2,…,n) where m denotes the total number of feasible alternatives and n represents the
number criteria under consideration.

Following the construction of the decision matrix, normalization is performed to eliminate unit
discrepancies and standardize the input data. This is achieved by dividing each criterion value Xij by the
sum  of  all  values  in  the  corresponding  criterion  column.  The  normalized  value  Pij  is  computed
using Eq. 9:

(9)ij
ij m

iji = 1

XP =
X

This normalization step ensures that each criterion contributes proportionately to the entropy weigh
computation, regardless of scale or magnitude.

After normalization, the entropy value Ej for each evaluation criterion Cj is computed using the following
formulation:

(10)m
j ij iji = 1E =-h P . ln (P ) for j =1, 2,... .., m; j =1, 2,... .,n

Where:
Pij = Normalized value of the ith alternative with respect to criterion j

= Constant that ensures the entropy value lies within the interval [0,1]1h = ln (m)
m = Number of alternatives
n = Number of criteria

The entropy weight Wj for each criterion as subsequently derived to reflect its degree of useful
information, defined as:

(11)j
j m

ji = 1

1-EW = for j =1, 2,...n
(1-E )

This formulation ensures that criteria with higher variability across alternatives (i.e., lower entropy) are
assigned greater weights, while more uniform criteria contribute less to the overall decision-making
process.
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Where:

(12)n
jj = 1W =1

PROMETHEE-II
The    PROMETHEE-II    method    is    a    complete    outranking-based    ranking    algorithm    that
supports   comprehensive   decision   making   across   multiple   alternatives   and   criteria.   In   this
study,   it   is   used   to   rank   hydrological   units   based   on   weighted   groundwater   potential 
conditioning factors. Each criterion is evaluated pairwise using a preference function Pij (a,b), based on the
performance difference dj (a,b) = gj (a) - gj (b) where gj represents the performance score of alternatives
a and b for criterion j.

The methodology involves the following steps:
Preference computation:

dj (a,b) = gj (a)-gj (b) (13)

Pj (a,b) = fi [dj (a,b)] (14)

Aggregate preference index:

(15)  n
j jj =1π a,b = W . P (a,b)

where, Denotes the weight assigned to each criterion (derived via methods).

Outranking flow calculation:

(16)+
x a

1(a) = π (a,x)m-1 
 

(17)-
x a

1(a) = π (x,a)m-1 
 

(18)+ -(a) = (a)- (a)  

Here Ø+ (a) and Ø- (a) are the positive and negative outranking flows and Ø (a) is the net outranking flow
used to produce the final ranking of alternatives.

This approach affectively handles multi-criteria comparisons and yields a deterministic ranking order
(complete preordering) among all evaluated alternatives. PROMETHEE II is widely used in environmental
and hydrological decision analysis due to its clarity, flexibility of preference functions and ability to handle
conflicting criteria29,30.

TOPSIS METHODOLOGY
The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a prominent multi-criteria
decision-making technique designed to rank alternatives by measuring their relative closeness to an ideal
solution. This method is suited to evaluating groundwater potential zones when multiple spatial criteria
must be reconciled quantitatively.
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Normalization of decision matrix: To handle heterogeneity in units across benefit and cost criteria, each
attribute xij in the decision matrix X = [xij]mxn is normalized using vector normalization:

(19)
ij

ij m 2
iji =1

xr =
x

This ensures comparability across criteria regardless of scale or dimension.

Weighted normalized decision matrix: The normalized values are weighted by the computed entropy
weights Wj:

vij= rij . wj i=1,…, m; j=1,…., n (20)

Where:

n
jj =1W =1

Identification of ideal solutions: The positive (A+) and negative (A-) ideal solutions are defined as:

A+ = [v1
+,…, vj

+,..., vn
+] (21)

A- = [v1
-,…, vj

-,..., vn
-] (22)

Where:

(23)++ ij
j -ij

max, v , if j JV = min, v , if j J


 

(24)+- ijj -ij

min, v , if j JV = max, v , if j J


 

Here J+ and J- are the sets of benefit and cost criteria, respectively.

Separation measures: The Euclidean distance from each alternative to the ideal solutions is computed:

(25)n+ + 2
i ij jj = 1D = (v - v )

(26)n- - 2
i ij jj =1D = (v - v )

Relative closeness to the ideal solution: The closeness coefficient Ci
+ for each alternative is calculated

as:

(27)
-

+ +i
i i+ -

i i

DC = (0 C 1)D D  

Higher values of  indicate preference, signifying alternatives closer to the positive ideal and further from
the negative ideal.

Ranking of alternatives: Alternatives are ranked in descending order of Ci
+, with the higher-valued

alternative deemed the most favorable groundwater potential site15.
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DEVELOPMENT OF PROMETHEE-CRITIC AND TOPSIS-ENTROPY MODEL FOR GROUNDWATER
POTENTIAL ZONING
In this study, a dual-model approach was employed to enhance the assessment of groundwater potential
zones. The object-oriented PROMETHEE-CRITIC model served as the primary decision-making tool, while
its outputs were validated using the entropy-based TOPSIS framework. Both models integrated seven key
groundwater potential conditioning factors (GPCFs): Lithology (L), transverse resistivity (TR), hydraulic
conductivity (K), lineament density (Ld), drainage density (dd), elevation and transmissivity (T). Model
construction was carried out using a Python-based framework, where the number of GPCFs, spatial
alternatives and corresponding weights for each criterion constituted the core input parameters. The
modeling procedure was implemented in two distinct phases. In the first phase, objective weighting of
criteria was performed using both the CRITIC method Table 2 and the entropy method Table 3. These
computed weights were subsequently incorporated into the PROMETHEE-II and TOPSIS decision-making
algorithms alongside the remaining input parameters.

Within both models, criteria were classified into two categories: Beneficial and non-beneficial (cost)
attributes. Beneficial criteria are those for which higher values are preferred, whereas cost criteria
represent factors where lower values are more desirable. Final model outputs-including the net outranking
flow from PROMETHEE-II and the relative closeness index from TOPSIS were derived through the
implemented python-based algorithms to establish robust rankings of groundwater potential across the
study area.

RESULTS AND DISCUSSION
Analysis of groundwater potential conditioning factors: The groundwater potential conditioning
factors (GPCFs) play a critical role in controlling grounding accumulation, storage and movement within
aquifer systems. Their spatial variability and hydrological significance directly influence the delineation of
zones with high groundwater potential. The relevance and contribution of each GPCF to groundwater
occurrence in the study area are discussed in detail below.

Lithology: Lithology is a fundamental determinant of groundwater occurrence, particularly in basement
complex terrains, where the nature and extent of rock weathering and fracturing significantly influence
aquifer development. The study area is underlain predominantly by two major lithological units: Migmatite
gneiss and Porphyritic Granitic Fig. 4. Among these, migmatite gneiss constitute approximately 90% of
the geological framework. The groundwater storage capacity within this setting is primarily governed by
the intensity of rock weathering and the presence of structural discontinuities, such as joints and fractures,
which enhance secondary porosity. The higher degree of weathering associated with migmatite gneiss
in the area suggests its increased potential to act as a productive aquifer zone relative to the more
massive and less fractured granitic unit.

Table 2: CRITIC weight for each criterion
Criterion Weight
Hydraulic conductance 0.194254
Trasverse resistance 0.121312
Tranmmissivity 0.094101
Elevation 0.114733
Drainage density 0.114062
Lineament density 0.115873
Lithology 0.245665
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Table 3: Entropy weight for each parameter
Parameter Entropy Weight
Hydraulic conductance 0.953229 0.022549
Trasverse resistance 0.861414 0.066813
Tranmissivity 0.860059 0.067467
Lineament density 0.394045 0.292136
Elevation 0.984987 0.007238
Lithology 0.538861 0.222319
Drainage density 0.333183 0.321478

Lineament density: Lineaments are geomorphological expressions of subsurface structural discontinuities
such as fractures, joints, faults, or lithological boundaries, which often serve as a preferential pathway for
groundwater movement and storage. These features, commonly extracted from remote sensing data and
Digital Elevation Models (DEMs), are critical in delineating zones of enhanced secondary porosity and
permeability in crystalline basement terrains31.

In  this  present  study,  the  lineament  density  map  Fig.  7  was  classified  into  five  district  categories:
Very low, low,  medium,  high  and  very  high.  The  spatial  distribution  reveals  that  over  98%  of  the 
study  area  exhibits  very  low  to  low  lineament  density,  implying  restricted  groundwater  potential
in  these  zones.  However,  areas  characterized  by  moderate  to  high  lineament  density  indicate
structurally enhanced aquifer potential due to increased fracture connectivity and water-bearing capacity.
These structurally controlled zones are key targets for groundwater development in basement complex
environments32.

Drainage density: Drainage density, defined as the total length of streams per unit area, serves as an
important indicator of surface runoff characteristics and infiltration capacity, both of which influence
groundwater recharge potential. In this study, the drainage density map Fig. 8 classifies the region into
five district zones: Very low, low, medium, high and very high.

Areas characterized by high drainage are indicative of increased surface runoff and reduced infiltration,
conditions typically associated with shallow, impermeable subsurface and limited groundwater recharge
potential. Conversely, regions exhibiting low drainage density suggest higher infiltration rates and
prolonged water residence time, both of which enhance subsurface recharge and groundwater
accumulation. Therefore, the spatial variation in drainage density directly informs the delineation of zones
with differing groundwater potential within the study area.

Elevation:  Elevation  plays  a  critical  role  in  controlling  surface  water  runoff,  infiltration  dynamics
and   ultimately   groundwater   recharge.   The   elevation   map   of   the   study   area   Fig.   3  reveals 
spatial   variability   in   topography,   categorized   into   five   classes   ranging   from   very   low   to  very
high.

Zones characterized by very low to low elevation correspond to gently sloping terrain, which facilitates
surface water retention, promotes infiltration and enhances the potential for groundwater accumulation.
These physiographic settings are typically favourable for the development and sustainability of
groundwater resources. In contrast, regions with moderate to very high elevation exhibit steeper
gradients, which accelerate surface runoff, reduce infiltration capacity and limit recharge into the
underlying aquifers. The topographic profile of the study area, therefore, significantly influences the spatial
distribution of groundwater potential.
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Fig. 9: Hydraulic conductivity map of the study area

Hydraulic conductivity: Hydralic conductivity (K) quantifies an aquifer’s capacity to transmit water
through interconnected pore spaces and fractures under the influence of a hydraulic gradient, serving as
a key parameter in evaluating subsurface permeability and groundwater potential33. The hydraulic
conductivity distribution across the study area is illustrated in the thematic map Fig. 9, highlighting spatial
variability in aquifer transmissivity characteristics.

The influence of hydraulic conductivity on groundwater occurrence is well established, with higher K values
typically associated with increased aquifer permeability and storage capacity. In this study, approximately
76% of the area is classified within medium to high hydraulic conductivity zones, indicating favourable
conditions for groundwater movement and accumulation. The remaining 24% is characterized by low to
relatively low K values, suggesting restricted groundwater flow potential. Although elevated K values are
indicative of enhanced aquifer productivity, hydraulic conductivity alone may not be sufficient to fully
assess the region’s groundwater potential. Its interpretation must be considered alongside other
hydrogeophysical parameters such as transmissivity, aquifer thickness and structural features to obtain
a comprehensive evaluation of groundwater resource viability. 

Transmissivity: Transmissivity (T) represents the capacity of an aquifer to transmit groundwater through
its saturated thickness under a unit hydraulic gradient and it is a product of hydraulic conductivity and
aquifer thickness. It reflects the volume of water that can be transmitted horizontally through a unit width
of the aquifer10. High transmissivity values are indicative of aquifer systems with enhanced pore
connectivity and fluid permeability.

The transmissivity distribution across the study area, as illustrated in the thematic map Fig. 10, is
categorized into five classes: Very low, low, medium, high and very high. The spatial analysis reveals that
approximately 65% of the  study  area  falls  within  the  very  low  to  low  transmissivity  zones,  signifying
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Fig. 10: Transmissivity map of the study area

Fig. 11: Transverse resistance map of the study area

restricted groundwater flow and limited aquifer productivity in most parts of the region. Only a small
proportion of the area exhibits moderated to high transmissivity, which suggests localized zones with
relatively better groundwater potential. This pattern underscores the heterogeneity of the basement
aquifer system and the influence of subsurface litho-structural variations on transmissivity values.
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Transverse resistance: Transverse resistance (Tr) is useful for evaluating the hydraulic properties of
aquifers, as it reflects both the resistivity contrast and thickness of groundwater-bearing formations.
Higher traverse resistance values is an indication of resistive materials which do not favour groundwater
accumulation. In basement complex terrains, where groundwater occurrence is often limited to fractured
and weathered zones, transverse resistance provides a reliable indicator for identifying potential water-
bearing zones and aquifer thickness variations. Fig. 11 depict that about 85% of the study area have low
transverse resistance which favour groundwater potentiality.

GROUNDWATER POTENTIAL MODEL MAPS OF THE STUDY AREA
The groundwater potential of the study area was spatially modeled using two integrated Multi-Criteria
Decision-Making (MCDM) approaches: PROMETHEE-CRITIC and TOPSIS-Entropy, both implemented in
a python programming method environment. These techniques generated groundwater potential indices
in form of net outranking flow (PROMETHEE) and relative closeness to the ideal solution (TOPSIS), which
were subsequently used to construct thematic model maps Fig. 12 and13.

The resulting groundwater potential model maps were classified into five distinct zones-very low, low,
medium, high and very-high using the Natural Breaks (Jenks) classification method, which optimizes class
breaks to maximize intra-class similarity and inter-class differences patterns reveals that both models
categorize the study area into major groundwater potential zones: (i) Low to very low and (ii) Moderate
to very high.

Notably, the central portion of the study area is predominantly characterized by moderate to high
groundwater  potential,  which  can  be  attributed  to  favourable  hydrogeologic  conditions  such as
increased  weathering,  enhanced  fracture  density  and  optimal  terrain  morphology.  Conversely, the
southern region displays widespread areas of low to very low groundwater potential, indicating less
favourable  conditions  for  groundwater  accumulation.  These  model  outputs  provide  a reliable
framework   for   prioritizing   groundwater   exploration   and   sustainable   management   efforts   within
the region.

Fig. 12: Groundwater potential map from PROMETHEE-CRITIC approach
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Fig. 13: Groundwater potential map from TOPSIS-entropy approach

Fig. 14: ROC curve for PROMETHEE-CRITIC and TOPSIS-Entropy model

Validation of model: The  predictive  robustness  of  the  developed  groundwater  potential  models-
PROMETHEE-CRITIC  and TOPSIS-Entropy  was  quantitatively  assessed  using  inter-model  correlation 
analysis  based  on  the  Receiver  Operating  Characteristic  (ROC)  curve  and  associated  statistical 
parameters  Fig.  14 and 15. This validation  aimed  to  evaluate  the  consistency  between  the 
groundwater  potential  indices  (GPIs) generated by both models.
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Fig. 15: Correlation between PROMETHEE and TOPSIS ranking

The classification performance was evaluated by computing the confusion matrix elements: True Positive
(TP), False Positive (FP), True Negative (TN) and False Negative (FN). These were used to determine the
True Positive Rate (TPR) and False Positive Rate (FPR) as given by the following equations:

(28)FPSensitivity = TPR = (TN+FP)

(29)FP1-Specificity =FPR = (FN+TP)

The Area Under the Curve (AUC) value for both models was calculated as 0.89, signifying high predictive
performance. Based on recent classification guidelines34, AUC values are interpreted as follows: 0.9-1.0
(excellent), 0.8-0.89 (very good), 0.7-0.79 (good), 0.6-0.69 (average) and below 0.60 (poor). Therefore, an
AUC of 0.89 indicates a very good agreement between the model outputs.

The corresponding p-value for the inter-model comparison was calculated as 3.96×10-7, indicating a highly
statistically significant correlation. Following current statistical thresholds35, p-values#0.01 are considered
excellent, between 0.01-0.05 as good, 0.05-0.1 as fair and >0.1 as poor.

The Pearson correlation coefficient (R) between the models was found to be 0.60, denoting a moderate
positive correlation. This aligns with contemporary classification ranges, where R$0.7 implies strong
correlation, 0.5# R<0.7 indicates moderate correlation and R<0.5 represents weak correlation36.

These metrics collectively confirm the reliability and agreement of the PROMETHEE-CRITIC and TOPSIS-
Entropy models for delineating groundwater potential zones in the study area.

This study applied PROMETHEE-CRITIC and TOPSIS-Entropy models to delineate groundwater potential
zones in Ilere, southwestern Nigeria, using integrated geoelectrical, geological and remote sensing
parameters. Seven conditioning factors-lithology, hydraulic conductivity, transmissivity, transverse
resistance, lineament density, elevation and drainage density-were evaluated.  The  validation  showed a
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strong correlation between both models with an AUC of 0.89 and a p-value of 3.96e-7, confirming their
reliability. The findings align with9,10 who also used hybrid MCDA models for aquifer potential in basement
terrains with high reliability. Adiat et al.14 found similar predictive strength using geoelectrical parameters
integrated with remote sensing and GIS. The role of lithology and lineament density as primary
groundwater indicators is very important in the findings. The dominance of migmatite-gneiss and
associated secondary porosity, as observed in this study, supports previous findings11. However, the
study’s inability to validate with direct comparison with borehole yields as a result of difficulty in getting
borehole yield data around the area. Future studies should prioritize borehole yield validation which will
strengthen empirical reliability. Expanding the model across different geological zones could also improve
its transferability for broader water resource management.

CONCLUSION
This study successfully applied the PROMETHEE-II and TOPSIS-Entropy models in groundwater potential
mapping for the study area, utilizing a combination of geophysical, geological and remote sensing data.
The integration of the CRITIC and Entropy weighting techniques provided an objective approach to criteria
importance, enhancing the reliability of the groundwater potentiality index. Results demonstrated a
significant correlation confirming the robustness of the applied methodologies. The groundwater potential
zones identified in the study provide crucial information for stakeholders in water resource management,
enabling better planning and sustainable utilization of groundwater resources. Future research could
expand on this approach by incorporating additional hydrogeological parameters and refining the model
for broader applications in similar geologic settings.

Link to the python-based-model codes utilized:

C https://github.com/Victoroluwatimilehin/AUC
C https://github.com/Victoroluwatimilehin/CORR-WITH-PYTHON
C https://github.com/Victoroluwatimilehin/Entropy-and-TOPSIS-CODE
C https://github.com/Victoroluwatimilehin/Victor-A
C https://github.com/Victoroluwatimilehin/Critic-weightage-code-with-python

SIGNIFICANCE STATEMENT
This study discovered the strong complementary performance of PROMETHEE-II and TOPSIS-Entropy
models integrated with objective CRITIC and Entropy weighting for accurate groundwater potential
mapping in crystalline basement terrains. These findings can be beneficial for groundwater planners,
hydrogeologists and decision-makers involved in sustainable water resource management in data-scarce
regions. This study will help researchers to uncover the critical zones controlling groundwater occurrence
that many studies were not able to explore. Thus, a new framework for MCDA-based groundwater
assessment may be arrived at.
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