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ABSTRACT
Background  and  Objective:  In  this  study  predictive  analysis  presents  a  comprehensive examination
of petroleum production forecasting. It focused on predicting oil, gas, and water production using
advanced machine learning (ML) techniques. Materials and Methods: Seven standalone models, which
include Multiple  Linear  Regression  (MLR),  random  forest  regression  (RFR),  XGBoost,  Support  Vector
Regression  (SVR),  decision  tree  regression  (DTR),  Artificial  Neural  Network  (ANN),  and Rotation
Forest (PCA with Random Forest as the base model), were developed and evaluated. Additionally,
developed a stacked model that combines Random Forest and XGBoost with Linear Regression as the
meta-model. A weighted average ensemble of Random Forest, XGBoost, and artificial neural network was
implemented  Mean  Absolute  Error  (MAE),  Root  Mean  Square  Error  (RMSE),  and  determination
coefficient  (R2)  score  are  among  the  evaluation  metrics  that  utilized  in  measuring  the  performance
of the models. Results: Among the standalone models, RFR achieved the best performance. It
outperformed the stacked model. However, the weighted average ensemble outperformed all other
models.  It  achieved  an  impressive  R²  score  of  0.949  for  oil  production,  0.948  and  0.968  for  gas
and water production,  and  also  it  achieved  least  RMSE  score.  Conclusion:  This  analysis  highlights 
the effectiveness of ensemble techniques, particularly weighted averaging, in accurately predicting
petroleum  production.  They  show  a  potential  for  upscaling  the  decision-making  act  in  the  oil  and
gas industry.

KEYWORDS
Oil, gas, and water production, machine learning, random forest, ensemble model, artificial neural network,
weighted average

Copyright © 2025 Olatunde et al. This is an open-access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided
the original work is properly cited.

INTRODUCTION
Petroleum production forecasting entails predicting fluid output from wells using historical data.
Petroleum production prediction is a critical task in the oil and gas industry, as it enables optimized field
development, resource management, and informed business decisions1. 
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The  oil  field  development  system  is  influenced  by  numerous  interconnected  variables  such as
reservoir   properties,    Fluid    properties,    and    operational    parameters    for    examples:    Injection 
and   production   rates   that   collectively   determine   its   behavior.   Moreover,   the   system  evolves 
due   to   continuous   extraction,   injection,   and   changes   in   reservoir   conditions2.  Modeling   all 
these   variables   together   is   a   challenging   task   requiring   advanced   techniques.   Different 
predictive  models  exhibit varying  characteristics,  such  as  prediction  accuracy.  Under  the  hood 
principles  of  the model, the complexity  of  the  system,  such  as  nonlinearity  and  multivariable 
interactions,    data    dependency3,   and   the   generalization   capability   of   the   models3,4   are  root
cause.

Progress  in  machine  learning  (ML)  in  the  past  few  years,  has  provided  powerful  tools for
addressing  these  challenges.  The ML  models  are  capable  of  leveraging  voluminous  historical 
production data  in  identifying  intricate  patterns  and  relationships  that  may  be  overlooked  by 
traditional techniques.  These  models  excel  in  capturing  nonlinear  dynamics,  enabling  more  accurate 
and reliable predictions5,6.

The  application  of  machine  learning  in  petroleum  production  prediction  spans  a variety of 
innovative    approaches    and    practical    implementations.    For    instance,    Artificial    Neural
Networks   (ANN),   due   to   their   ability  to   model   complex   non-linear   relationships   observed
amongst  input  features  and  production  outcomes,   have   been   widely   adopted,   particularly  in 
time-series    data    analysis7,8.    Similarly,    Support   Vector    Machines    (SVM)    are    utilized   for 
predicting  production  rates  for  their  effectiveness  in handling high-dimensional datasets and
nonlinearity.

Ensemble   machine   learning   methods,   including   random   forest   regression   and  gradient 
boosting, have gained  popularity  for  their  robustness  and  accuracy  in  handling  noisy  and 
imbalanced   datasets   often    encountered   in   petroleum   production9.   These   methods  integrate 
multiple    models   to   enhance   prediction   performance   of   the   model.   Moreover,   novel  deep
learning   architectures,   that   include   convolutional   neural   networks   and   long   short-term memory
neural   networks,   are   being   applied   to   analyze   spatial   and   temporal   data,   such   as   seismic
surveys9   and  reservoir  simulations,  with  remarkable  success9,10.

Another   promising   application   of   machine   learning   is   in   optimizing   reservoir   management 
and  decision-making  processes.  Reinforcement  learning  has  been  explored  for  its potential to
automate  well  control  strategies  and  enhance  recovery  rates11.  Additionally,  unsupervised ML
techniques,  which  include  clustering,  are  used  to  segment  reservoirs  into  production zones,
improving well placement and resource allocation12.

This   research   focuses   on   employing   ML   to   predict   oil,   water,   and  gas   production.  Both 
standalone   models  and  novel  ensemble  approaches  were  explored.  The  standalone  models
included well-established algorithms  such  as  linear  regression,  random  forest  regression  (RFR), 
XGBoost,   Support   Vector  Regression   (SVR),   decision   tree   regression   (DTR),   Artificial  Neural 
Network   (ANN),   and  Rotation  Forest  (principal  component  analysis  (PCA)  with  random  forest  as
the  base  model).  To  further  enhance  prediction  accuracy  and  robustness,  advanced  ensemble
techniques  were  implemented.  These  included  stacked  models  and  average-weighted  ensemble 
models,  which  combine  the  strengths  of  multiple base learners.
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The objective of this prediction analysis research is twofold: It includes evaluation of the performance of
individual ML models in predicting production,  and  second,  to  investigate  whether  ensemble  methods
can provide a significant improvement over standalone models. By integrating traditional machine
learning techniques with innovative ensemble methods. This research aims to contribute to the
development of more reliable and efficient tools for oil field production prediction.

MATERIALS AND METHODS
The  workflow  is  detailed  in  Fig.  1,  It  follows  the  conventional  workflow  for  machine  learning
prediction which involves importation of the dataset, extraction of meaningful information such as 
statistical  information  through  transformation  and/or  exploration  of  the  dataset,  followed  by 
partitioning of the data into features and labels. The data is further divided into training and testing set
after which models are trained and evaluated. The process is repeated until a more suitable result is
achieved.

Study  duration:  This  research  project  was  conducted  from  6th  August,  2024,  to  12th  February,
2025.

Dataset analysis: The dataset used in this research analysis contains five wells. The wells are combined
to  form  custom  data  that  was  used  in  training  the  ML  model.  The  custom  dataset  has  8 features
and 3 production columns, which include oil, gas, and water production (Fig. 2a-c shows the production
volume for 8 years) with a total of 6926 data observations.

Feature column includes: Production Date (which was formatted into year, month, and day as separate
columns), Well Bore Name, Downhole Pressure (PSI), Downhole Temperature (Kelvin), Average Tubing
Pressure, Annulus Pressure (PSI), AVG WHP (PSI), and Choke Size. The production column (target) includes
Oil Production (stb/day), Water Production (stb/day), and Gas Volume (scf/day). The significance of each
of the features was evaluated using a random forest. The year was observed to be of utmost importance,
as shown in Fig. 3. This affirms the time-dependent nature of the dataset utilized the following model in
this prediction analysis.

Standalone model
Multiple  linear  regression:  Multiple  Linear  Regression  (MLR)  is  generally  used  to find the
relationships of a dependent variable with numerous independent or predictive factors1. It is an extension
of  simple  linear  regression,  which  only  considers  one  independent  variable.  The  model  employs
a linear regression framework, wherein the input features are linearly combined using coefficients
estimated through optimization techniques, such as Ordinary Least Squares (OLS)13, to predict the
continuous output variable to predict the continuous output variable. Multiple Linear Regression (MLR)
establishes  a  mathematical  relationship  between  multiple  input  variables  (xn)  and  a  target variable
(y), as described by equation:

y = w0+w1×1+…+wnxn (1)

Where:
y = Dependent variable
w0 = Intercept
w0 and wn = Coefficients for the independent variables
x1 and xn = Independent variables
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Fig. 1: Analysis workflow

Given data xi 0 Rd, yi 0R are the input features and the target values, respectively. The function is
represented as: 

f(x) = wT(x)+b (2)

Where:
wT = Weight vector
x = Input feature vector
b = Bias term

Radial basis function (RBF) was utilised in our research analysis. The equation is represented as:
 

K(xi,xj) = exp(-γ2xi-xj2
2) (3)

Where:
xi and xj = Two feature vectors
||xi-xj||2 = Squared Euclidean distance between the vectors
γ = Hyperparameter  that  defines  how  far  the  influence  of  a  single  training  sample

reaches

Support vector regression (SVR): The SVR is a sophisticated and popular ML algorithm that is generally
considered an extension of support vector classification, which in turn is believed to be an extension of 
the  perceptron.  Support  Vector  Machines  (SVM)  involves  the  transformation  of  a  low-dimensional,
non-linear  data  to  a  higher-dimensional  feature  space,  where  the  problem  becomes  linearly
separable14.

Decision tree regression (DTR): The DTR is an ML algorithm that predicts continuous outcomes. It works
by creating a tree-like network, where internal nodes denote features or attributes; branches denote
decisions or splits; leaf nodes represent predicted outcomes15. A regression tree is generally more intricate
than a classification tree. In decision tree regression, the data is optimally divided into segments known
as leaves. 
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Fig. 2(a-c): Production volume through the years, (a) Oil production, (b) Gas volume and (c) Water
production

This  division  is  achieved  by  utilizing  threshold  values  to  address  two  key  questions: i. Does splitting 
a  node  in  a  decision  tree  provide  additional  insights  into  the  dataset? ii. Does incorporating
information entropy provide any additional value to the method we intend to use for grouping our data
points? [1] The algorithm stops when a stopping criterion is reached16.

The predicted outcome is the average value of the target variable in each leaf node.

The  outcome  is  predicted  as  the  average  value  of  the  target  variable  in  each  leaf  node  with
equation:

(4)ii n
1Y = Yn 

Where:
Y2 = Predicted value for input x
Yi = Actual target values
n = Number of samples
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RFR: Random Forest Regression (RFR) is an ML-based regression technique that draws on the power of
bagging and random subspace methods17. It generates a diverse ensemble of decision trees through
bagging, which combines multiple trees to produce a single, robust prediction. To train the individual
trees, the algorithm produces numerous bootstrap samples by resampling the original training data, each 
consisting of N instances randomly selected with replacement. The overall prediction is then obtained
through a combination of these tree predictions, as represented by the general equation for RFR
prediction:

(5)
K

k
K =1

1Y = h (x)K 

Where, y8, K, hk, denote the final predicted continuous value, the number of trees in the forest, and the
numeric output from the ith tree for input (x), respectively

XGBoost: The XGBoost  is  an  optimized  gradient-boosted  decision  tree  (GBM)  algorithm  that
balances performance  and  speed.  It  employs  gradient  tree  boosting  and  offers  various  features 
to enhance its functionality.  Unlike  standard  optimization  methods,  XGBoost  uses  an  incremental 
approach  to train the model, as traditional methods cannot improve the tree ensemble in Euclidean
space17. Regularized  learning  is  also  utilized  to  smooth  the  final  learned  weights,  preventing 
overfitting  due to dataset size and other factors. The regularized objective favors models with simple and
predictive functions17.

The XGBoost is particularly useful if the number of features is reduced compared to the number of
observations or when dealing with numeric features exclusively. It operates similarly to a decision tree,
creating a specific number of trees based on the problem, but does so incrementally. Each new tree
compensates for the errors from the prior tree, allowing for improved performance. The XGBoost
underhood is represented as: 

(6)i i iY =F (X ) = fd (X ), fd Î F,i =1,...,n

Where:
Yi = Predicted value for the ith value
XI = Field vector of the ith data point
fd = nth regression tree
N = Total iteration
F = Space of all possible regression trees

ANN: An Artificial Neural Network (ANN) is a deep learning method that mimics the human brain’s
functionality by simulating the interactions between neurons18. It consists of three primary layers: an input
layer, one or more hidden layers, and an output layer. The input layer receives and processes datanet
inputs, assigning weights and passing them to the hidden layers, where complex representations are built
through the application of activation functions and bias variables. Each hidden layer can employ different
activation functions, allowing for diverse transformations of the data. Ultimately, the outputs from all
hidden layers are aggregated in the output layer, where the final predictions are made, such as forecasting
oil, gas, and water production over three years in our experiment, which utilized 35 output neurons. At
its core, ANN relies on a network of interconnected neurons across multiple layers, receiving inputs (xi)
with associated weights (wij) and bias values, enabling the activation  function  to  be  shifted  by  a 
constant19,  as represented in Equation (8).
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(7)
n

j ij i j
i = 1

N = σ W (x )+b

Where:
Nj = Output of hidden neuron j
σ = Output activation function
wij = Weight from input neuron j
xi = Input features
bj = Bias for hidden neuron j

Rotation  forest  (PCA  with  random  forest  as  the  base  model):  It  employs  feature  extraction and
rotation  to  generate  diverse  base  classifiers,  resulting  in  a  robust  ensemble  framework.  The  central
idea of  Rotational forest  is  to  apply  rotation  to  the  feature  space.  This  is  achieved  through
Principal  Component  Analysis  (PCA)  or  other  linear  transformations  on  random  subsets  of the
features20,21.

Each subset is transformed independently, ensuring that the rotated feature sets are unique for each base
classifier.

Rotational forest constructs an ensemble of the base learners. The base learners are trained on a different
rotated version of the data21. The rotations increase the diversity among base classifiers, which is critical
for reducing the risk of overfitting and improving generalization21

Steps in rotational forest with random forest as base model
Dataset partitioning: The feature set X with n features is divided into K non-overlapping subsets. For
instance: 

if X = {x1, x2,… , xn} (8)

It is partitioned into K subsets, such as S1, S2, . . ., SK, where 

(9)Si SJ= θ for i j

Feature rotation
C For each subset Sk
C Perform PCA to extract principal components
C Retain all principal components to ensure no information loss
C Use the rotation matrix obtained from PCA to transform the subset
C Rotated feature subsets are concatenated to form a transformed feature set for training the base

model

Training   base   models:   Train   a   separate   base   model   on   each   transformed   dataset   created 
through  PCA-based  rotation.  In  the  case  of  this  analysis,  a  random  forest  was  used  as  the  base
model.

Since Random Forest uses bagging and feature randomization, the rotational transformation further
increases diversity among the decision trees.
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Novel ensemble model
Stacked model: Stacked modeling, or stacking, utilizes a meta model to combine or stack various models’
predictions to improve overall performance. Introduced by Wolpert22, stacking operates on the principle
that individual models may specialize in mapping different patterns present in the data, including the
collective outputs can provide a more robust and precise prediction. The key idea is to use a model
denoted as the meta-learner to learn the best techniques in combining the predictions of the prior
models.

Stacking is highly versatile and can be applied to both classification and regression tasks. Unlike simple
averaging or voting ensemble methods, stacking explicitly learns the optimal way to combine model
outputs, which often results in superior predictive performance.

Weighted average ensemble: Weighted average ensembles operate on the assumption that certain
models within the group possess greater accuracy or skill compared to others, and thus, these models are
assigned a higher weight or contribution  when  making  predictions.  It  is  a  robust  ensemble  modelling
technique used in improving predictive performance by combining the outputs of multiple base models.
Each model contributes to the last prediction based on a pre-assigned weight, reflecting its performance
or reliability.

(10) 
n

1 i ti
n
i 1 i

= w .yy =
= w




Where:
y = Final ensemble prediction
n = Number of models in the ensemble
wi = i-th model, and denotes the prediction of the i-th model.
wi = Weights wi are often normalized to sum up to 1, making the denominator

In this case, the formula simplifies to:

(11)
n
i 1 ti= w .y

This analysis aims to predict three variables: Petroleum production; therefore, a Multiple Output regression
was utilized for the model.

Model performance evaluation index: Three models are selected to evaluate the model’s performance.
They include: i.) Root mean squared error (RMSE), ii.) Mean absolute error (MAE), iii.) Determination
coefficient (R2). Equations for calculating the indices are as follows:

(12) 2n
i ii = 1

1RMSE = (y - y )n 

(13)n

i 1 i l
1MAE = y - yn 

(14)
 2n

li = 1
2n

i = 1

(yi- y )
R2 =

(yi- y)



Where:
yi, y8l, y2 = Actual values, prediction values and mean values of the sample data, respectively
n = Sample size
Greater R2 score (tending to 1) and smaller RMSE and MAE score denotes better performance
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Data preprocessing: An 80% training data with 20% testing data split achieved with the sklearn
train_test_split library was utilized. Standardization was applied to the dataset. The sklearn StandardScaler
was used to normalize the dataset. Additionally, a Multi-Output regression model was used to predict the
three variables simultaneously. The parameters used in all the models we utilized for this prediction
purpose are represented in Table 1.

RESULTS
Standalone model
Multiple linear regression (MLR): Sklearn Linear Regression was used in implementing the multiple
linear regression model. Figure 4a-c shows the distribution plot of the prediction against the real values.
for oil production, gas production, and water production prediction, the R2 obtained are 0.789, 0.792, and
0.733 respectively.

SVR: The dataset was normalized using the sklearn StandardScaler() library. Grid search was applied to
obtain  the  best  hyperparameter.  The  hyperparameter  that  yields  the  best  outcomes  can  be seen
in  Table  1.  The  distribution  plot  of  the  actual  and  predictions  of  petroleum  production is visualized
in Fig. 5a-c. 0.882, 0.04, and 0.895 are the R2 scores obtained for oil production, gas production, and water
production, respectively.

DTR:  Decision  Tree  Regression  (DTR)  algorithm  from  sklearn.  tree  was  applied  in  this  model. The
dataset  was  standardized  and  normalized.  Grid  search  techniques  were  also  applied  for
hyperparameter  tuning.  The  following  hyperparameters  produced  the  best  results:  max_depth ‘7’,
min_samples_leaf  ‘10’.  Figure  6a-c  shows  the  plot  of  predictions  versus  the  actual  values  for oil
production, gas production, and water production achieved an R2 score of 0.902, 0.895, and 0.931,
respectively.

Fig. 3: Features importance
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Fig. 4(a-c): A  distribution  plot  of  MLR  prediction  values  and the actual value of the three productions,
(a) Oil production, (b) Gas production and (c) Water production

Table 1: Parameters and hyperparameters used for different machine learning models employed in the prediction task after
preprocessing with 80:20 train-test split and standardization

Model Parameter Parameters value
MLR - -
SVR Kernel rbf

Gamma auto
C 2000
Epsilon 0.01

DTR Max_depth 7
Min_samples_leaf 10

RFR N_estimator 100
Random_state 42

XGBoost Objective Reg:squarederror
n_estimators 200
Random_state 42

Rotational forest (pca + random forest) No. of subset 3
For the base model
N_estimator 100

ANN Optimizer adam
Dense 64
Drop-out 0.2
Activation relu
Epochs 200
Batch-size 32
Validation_split 0.2

https://doi.org/10.3923/ajer.2025.76.95  |               Page 85

P
re

d
ic

te
d

Linear regressor-oil producation

30000

20000

10000

0

-10000

0 10000 20000 30000

Actual

(a)

R -0.789²

Linear regressor-gas producation

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

0 1 2 3

Actual

(b)

R -0.792²

Linear regressor-oil producation
40000

30000

20000

10000

0

10000

20000

0 10000 20000 30000

Actual

R -0.733²

(c)

1e7

1e7



Asian J. Emerging Res., 7 (1): 76-95, 2025

Fig. 5(a-c): A  distribution  plot  of  SVR  predictions  values  and  actual  value  of  the  three 
productions, (a) Oil production, (b) Gas production and (c) Water production

Table 2: Weight assigned to the models 
Models Oil production prediction Gas production prediction Water production prediction
Random forest 0.33483115 0.3357409 0.3335228
Xgboost 0.33267968 0.33267968 0.33365933
ANN 0.33260738 0.33157933 0.33281788

Table 3: Determination coefficient (R2) score (the highest values were highlighted)
Model Oil production Gas production Water production Average score
MLR 0.789 0.792 0.733 0.771
SVR 0.871 -0.016 0.871 0.575
DTR 0.902 0.896 0.931 0.91
ROT RF 0.944 0.941 0.951 0.945
XGB 0.942 0.939 0.965 0.949
ANN 0.948 0.943 0.963 0.951
RF 0.949 0.948 0.964 0.954
Stacked 0.941 0.94 0.964 0.948
WE 0.952 0.951 0.97 0.958

XGB: The XGBoost library was used in the implementation of this model-XGBoost (XGB). Standardization
and normalization were implemented for this model. Grid search was also applied. The best result was
achieved with the following hyperparameters: Objective ‘reg:squarederror’; colsample_bytree ‘0.3’;
n_estimators ‘200’, random_state 42. Oil, water, and gas production prediction attained an R2 of 0.942,
0.939, and 0.964, respectively. Figure 7a-c is a plot showing the distribution of predicted values against
the actual values.
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Fig. 6(a-c): A distribution plot  of  DTR  predictions  and  the  actual  value  of  the  petroleum  production,
(a) Oil production, (b) Gas production and (c) Water production

Table 4: MAE and RMSE score (The highest values were highlighted)
MAE score RMSE score

---------------------------------------------------------------- ------------------------------------------------------------------
Model Production oil Production for gas Production for water Production oil Production for gas Production for water
MLR 2735.21 2123914.11 4379.46 4097.12 3232452.56 5972.47
SVR 1625.72 4993338.94 2167.48 3206.08 7145420.46 4151.7
DTR 1324.43 1090164.12 1544.46 2793.49 2289331.18 3026.37
XGB 777.91 654773.81 958.04 2144.14 1747492.5 2173.48
RFR 705.57 580100.69 816.34 2021.09 1618460.71 2185.58
ANN 1037.61 918518.38 1153.24 2031.49 1696972.25 2212.64
ROT RF 772.45 646464.87 998.14 2118.19 1718258.8 2552.22
Stacked 780.31 650043.37 973.07 3206.08 7145420.46 4151.7
WE 756.19 642692.66 871.73 1947.37 1568563.85 1987.4

RFR: Random Forest Regression (RFR) model from sklearn. The ensemble was implemented.
Standardization and normalization were applied to the dataset. A grid search technique was also
implemented    for    hyperparameter    tuning.    The    best    result    was   obtained   with   the  following
hyperparameters: n_estimators ‘100, random_state = 42. The most outstanding evaluation score for the
standalone model was achieved with this model. For oil, gas, and water production, a better R2 score of
0.948, 0.947, and 0.964 was achieved. Figure 8, shows the plot of production prediction versus real values.
The points are tightly clustered around the red line, which shows a high level of prediction accuracy.
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Fig. 7(a-c): A  distribution  plot  on  XGB  predictions  and  actual  value  of  the  petroleum  production,
(a) Oil production, (b) Gas production and (c) Water production

Rotational  forest  model:  Feature  transformation  (feature  extraction  and  rotation)  was  applied
using  PCA  from  sklearn.  Decomposition  and  random  forest  regression  as  base learner. The
parameters  of  the  base  learner  include  n_estimator:  200,  random_state:  42.  Three  random subsets
were used in this prediction. This model, for oil, gas, and water produced, had R2 score of 0.924, 0.926,
and  0.950,  respectively.  Figure  9,  Shows  the  distribution  plot  of  the  prediction  values  versus  real
values.

ANN: For Artificial Neural Network (ANN), a Sequential classifier from keras. The models library was used
in building this model. Standardization and normalization were applied to the data set. The
hyperparameters that were adopted in this prediction process are recorded in Table 1. The deep learning
algorithm for oil, gas, and water production prediction attained an R2 score of 0.942, 0.936, and 0.962,
respectively, as shown in Fig. 10.

Novel ensemble model
Stacked   model:   Predictions   of   random   forest,   Xgboost,   and   artificial   neural    network   (which 
are the top-performing  standalone  models)  were  stacked  together  with  the  numpy  column_stack 
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Fig. 8(a-c): A  distribution  plot  of  RFR  prediction  values  and  the  actual values of the three production,
(a) Oil production, (b) Gas production and (c) Water production

function. A linear model  was  used  as   the  meta  model   to  map  the  linear  relationship  between  the
predictions.  For  oil,  gas,  and  water  production  prediction,  good  R2  scores  of  0.941,  0.939,  and 
0.963  were  achieved.  Fig.  11.  shows  the  p lot  of  production  prediction  values  versus  the  real
values.

Weighted  average:  Weights  were  assigned  to  three  models,  which  are  random forest, xgboost, and
artificial  neural  network.  More  weight  was  assigned  to  the  random  forest  model  with  an average
weight  of  0.3347,  which  is   the  highest  among  the  three  models.  0.333  and  0.332  were  assigned
to  XGBoost  and  ANN,  respectively  (shown  in  Table  2).  The  weighted  average  model  has an
outstanding  average  R2  score  of  0.956.  Oil  production  prediction  has  an  R2  score  of  0.951, 0.948
and  0.970  for   gas   and   water   production   prediction,   respectively   (Fig.   12).   In   comparison  
to  other  ensemble  and  standalone  models  weighted  average  has  an  outstanding  prediction
performance.

The  standalone  model  had  the  least  performance  on  the  gas  production  prediction,  except for
multiple  linear  regression,  which  had  its  least  performance  for  oil  production  prediction, as seen 
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Fig. 9(a-c): A distribution plot on rotational forest predictions and actual value of the three production,
(a) Oil production, (b) Gas production and (c) Water production

in   Table  3.   Random    forest    regression    has    the    best    performance    among    the    standalone
models,  the  highest  R2  average  score  of  0.953,  and  the  least  MAE,  RMSE,  and  MSE  scores.  For 
the  novel ensemble  model  weighted  average   model   has   the   best   performance   with    an 
average   R2   score   o f   0.957   (Table   3),   and   the  lowest  error  scores.  Overall,  the  weighted 
average  model  outperformed  other  models.  It  achieved  the  highest  R2  score  (Table  3)  and  the 
lowest  error  score  (Table  4)  except  for  mean  absolute  e rror,  w here  random  forest  has  the least
error  score.  For  R2  score,  the  weighted  average  model  outperformed  random  forest  by  0.42%, 
also  ANN,  XGBoost,  stacked  model,  rotational  forest,  DTR,  MLR  and  SVR  were  outperformed  by
0.73, 0.93, 1.04, 1.35, 5, 19 and 39% respectively well, with support vector regression having the least
performance (an average R2 score of 0.606 and highest error score) this is due to extremely poor
prediction.  the  weighted  approach  optimizes  overall  accuracy  by  strategically  blending predictions.
This  ensemble  method  typically  achieves  better  generalization  by  balancing  underfitting/overfitting
risks across diverse data patterns.
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Fig. 10(a-c): A distribution plot of ANN predictions and actual values of the three production, (a) Oil
production, (b) Gas production and (c) Water production

DISCUSSION
This  analysis  highlights  the  efficacy  of  ensemble  machine  learning  techniques  in petroleum
production prediction. The weighted average ensemble model outperformed standalone models in
predicting  petroleum  production  (oil,  gas,  and  water).  It  achieved  an  average  R2  score  of  0.958
and the lowest RMSE values. Random Forest Regression (RFR) has demonstrated the strongest
performance  among  standalone  models,  with  R2  score  of  0.953,  which  is  followed  by   XGBoost
(R2 score of 0.949) and Artificial Neural Networks (R2 score of 0.951). These findings showcase the
superiority of the novel  ensemble  methods  in  capturing  complex,  nonlinear  relationships  inherent 
in  petroleum production data. These align with the growing emphasis on data-driven decision-making
in the oil and gas industry.

The results highlighted the robustness of ensemble methods in handling imbalanced geoscientific
datasets. This is in agreement with Jamshidi Gohari et al.9. Their work emphasized that combining multiple
base learners mitigates overfitting, a trend observed in our weighted average ensemble. The exceptional
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Fig. 11(a-c): A distribution plot of the stacked model’s actual predictions and actual values of the three
production, (a) Oil production, (b) Gas production and (c) Water production

performance  of  RFR  also  aligns  with  Breiman17,  who  established  its  efficacy  in  noisy  datasets. 
Similarly,  Ibrahim  et  al.1  reported  RFR  as  the  top  performer  in  hydrocarbon  production forecasting,
attributing its success to feature randomization and bagging. Our stacked model (R²= 0.948) did not
surpass  RFR,  contrary  to  Wolpert’s22  hypothesis  that  meta-learners  enhance  predictions.  This
suggests that simpler ensemble methods (e.g., weighted averaging) may be more effective for petroleum
production datasets. Further experimenting may provide more balance and distinctions between the two
methods.

The  dataset  is  a  major  limitation  to  this  analysis.  It  comprised  only  five  wells.  This  may  limit the
individual model's generalization ability. Future work should incorporate larger, geographically diverse
datasets.  The  models  were  tested  on  historical  data,  integration  of  real-time  sensor  data, as 
proposed  by  Nautiyal  and  Mishra12,  could  improve  dynamic  forecasting.  Ensemble  models 
sometimes lack interpretability. Hybrid approaches, which combine ML with physics-based model2 could
bridge this gap.
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Fig. 12(a-c): A distribution plot on weighted average model’s predictions and actual values of the three
productions, (a) Oil production, (b) Gas production and (c) Water production

CONCLUSION
This study applied standalone and ensemble machine learning models to predict oil, gas, and water
production. Among the standalone models, rotational forest, XGBoost, ANN, and random forest
demonstrated strong performance with average R² scores of 0.932, 0.948, and 0.953. The weighted
average ensemble achieved the best results overall, with the highest R² score of 0.956 and the lowest
RMSE. Although the stacked model combining random forest, XGBoost, and ANN did not surpass the best
standalone models, further optimization could enhance its effectiveness. Overall, the findings highlight
the value of artificial intelligence in petroleum production forecasting, offering a sustainable, accurate, and
cost-effective approach for the oil and gas industry.

SIGNIFICANCE STATEMENT
Accurate forecasting of petroleum prediction is critical for optimizing resource management and planning
in the oil and gas industry, yet traditional prediction methods often fall short in capturing the complex
relationships among production parameters. This study developed and compared seven advanced
machine learning models and introduced ensemble approaches-specifically a weighted average ensemble
of Random forest, XGBoost, and Artificial Neural Network-to predict oil, gas, and water production rates.
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The weighted ensemble model significantly outperformed all others, achieving an R2 score of 0.949 for
oil, 0.948 for gas, and 0.968 for water, averaging 0.958, alongside the lowest RMSE values. These results
underscore the superior accuracy and robustness of ensemble machine learning methods, particularly
weighted averaging, over individual and stacked models. This advancement offers substantial potential
to enhance data-driven decision-making and operational efficiency across petroleum exploration and
production activities globally.
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